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Abstract 
Test users often want to know how much scores would change if different measurement conditions were used: if the test was taken at a dif-

ferent time, contained different items, or was scored by someone else. If the student took the test on another day, what is the probability they 

would pass the course? If a different professor read the applications, what is the probability they would admit the same students to the graduate 

program? If a different clinician interviewed the client, what is the probability the client would receive the same diagnosis? This paper demon-

strates a new method for calculating the probability of changes in observed test scores under slightly different measurement conditions. It also 

demonstrates the relationship of these new calculations to the Reliability Coefficient used in Classical Test Score theory and to the Concor-

dance Correlation Coefficient developed by Lin (1989) to measure absolute consistency.  

For interval or ratio level data, Score Change Probabilities are calculated in three steps. First, subtract the two sets of scores to obtain the 

Score Change values. Second create a frequency table to show how often each Score Change value occurs. Third, convert the frequencies into 

probabilities, by dividing by the total number of cases. Score Change Probabilities can be summarized using the Standard Change, which is the 

square root of the average squared Standard Change value. For ordinal level data, two analyses are possible: Rank Change Probabilities (and 

the Standard Rank Change), or the proportion agreement among the top ranked participants. Finally, for nominal level data, the probability of 

category changes can be calculated. 

These calculations are demonstrated using data from the Levels of Emotional Awareness Scale (LEAS; Lane & Swartz, 1987). 18 research 

assistants rated 48 participants on the LEAS. Two pairs of RAs are examined in detail. One pair had high consistency (CCC = .98, Standard 

Change = 1.53). The other pair had acceptable inter-rater reliability (.79) but detailed examination revealed that these two RAs did not have 

adequate levels of agreement, even for research purposes (CCC = .72, Standard Change = 6.25). Thus, Score Change Probabilities provide in-

formation that complements the information given by existing measurement theories. 
 

Introduction 
Mary failed an essay exam. She says she knows the material and that she failed for three reasons. First, the questions weren’t fair. If the 

exam had included different questions, she would have been fine. Second, the TA was too hard. If the instructor had done the grading, she 

would have passed. Finally, she couldn’t sleep the night before because the apartment above her flooded at midnight. If the exam had been on 

another day, she would have been better rested and able to demonstrate what she knew. Is Mary right? How much would her exam grade have 

changed if the exam had different items, was marked by someone else, or was given on a different day? What is the chance that she would have 

passed the exam? This paper will demonstrate how to answer these questions. 

Test takers (such as Mary) and test users (such as Mary’s teacher) often want to know how much scores would change if slightly different 

measurement conditions were used: if the test contained different items, was scored by someone else, or was taken at a different time. Existing 

measurement theories (e.g., Classical Test Score Theory, Lord & Novick, 1968; Latent Trait Theory, Lord, 1980; and Generalizability Theory, 

Cronbach, Gleser, Nanda, & Rajaratnam, 1972) do not answer this question directly, and require a number of assumptions in order to estimate 

this answer indirectly. This paper develops a new method that answers this question directly, by calculating the probability that scores will in-

crease or decrease by any given amount. 
 

Score Change Probabilities 
Imagine a class of students completes an essay exam. Grading the essay will be time consuming and so two raters (the instructor and the 

TA) plan to divide the grading. What effect will this have?  What if one rater is “easier” than the other? To assess the comparability of scores 

that are assigned by two graders, both graders should provide scores for a relatively large number of students (for example, 50 students). We 

can then assess the comparability of these scores using traditional inter-rater reliability coefficients and Score Change Probabilities. If these 

calculations show that the two scorers are comparable, then we can justifiably divide the grading between the two people; otherwise one of 

them will have to grade every essay. 

 To show that Score Change Probabilities complement the information 

given by traditional reliability coefficients, we will consider an example in 

which the correlation between the scores assigned by the TA and the Instruc-

tor is .92. See the Score Change Probabilities given in Table 1. The second 

column of the table shows that the grade may change if the Instructor was the 

first grader and now the TA is going to mark an essay. For example, there is a 

10% chance that the grade will stay the same, and a 4% chance that it will in-

crease by 1 point. The third column shows the opposite probabilities: the 

probabilities that the grade will go up or down if the first grader was the TA 

and now the Instructor will mark the essay. Finally, the fourth column shows 

what happens if the Instructor and TA each grade half the essays first, where 

the division of essays between the Instructor and TA is random: The grade 

has an exactly equal chance of increasing or decreasing when the second per-

son marks the essay. The probabilities in the last column are simply the aver-

age of the probabilities in the second column and the probabilities in the third 

column.  In this example, there is a 22% chance that the grade will change by 

10 or more points.  To make this example more concrete, consider the grad-

ing scheme that I use in my undergraduate classes: A grade of 60 is D-, 70 is 

a C-, 80 is B-, and 90 is A-.  A grade change of 10 points means that a 71 C- 

changes to 81 B- or 61 D-.  This level of consistency would be considered 

unacceptable by most instructors. However, the inter-rater reliability coeffi-

cient was .92. This example demonstrates that the inter-rater reliability coef-

ficient by itself does not fully describe the consistency (or inconsistency) of 

scores.  

 

Interval or Ratio Data 
 For interval or ratio level data, calculating basic Score Change Probabili-

ties requires four steps. First, obtain two sets of scores that you want to com-

pare. For example, these might be scores from the same research participants 

at two testing times, or from two forms of a test that contain different items, 

or from two raters. Second, for each participant, calculate the difference be-

tween the two scores. These differences are called Score Change values. 

Third, create a frequency table that shows how often each Score Change 

value appears. Finally, convert the frequencies into probabilities, by dividing 

by the total number of participants.  If there are a large number of possible 

Score Change values, it may be helpful to group the Score Change values into 

intervals for presentation purposes, rather than presenting the probabilities for 

each possible Score Change value, or to show the probabilities on a graph. 

 Sometimes we transform scores before we use them. For example, we 

might convert them into T-scores or CEEB scores (see Murphy & David-

shofer, 2005).  To calculate Score Change Probabilities for transformed scores, start by calculating the transformed scores. Then calculate the 

Score Change Probabilities using the same steps as you would use for raw scores. 

 

Ordinal Data 
 Data can be measured at the ordinal level or can be transformed to the ordinal level for de-

cision making. One common ordinal level measure is an agreement scale where 1 = strongly 

disagree, 2 = disagree, 3 = neutral, 4 = agree, and 5 = strongly agree. Even if data were not 

measured at the ordinal level, psychologists often convert data to the ordinal level for decision 

making purposes. For example, if 10 students applied to a graduate program, faculty might be 

rank order the applicants to determine who to admit.  When we use ranked data such as this, 

we might wonder if the rank order of the applicants would be the same if someone else evalu-

ated the files. We can determine this directly: we can have another person evaluate the materi-

als and rank order the applicants. Then we can calculate the change in the rank orders for each 

applicant (see Table 2). 

 At this point, we have two options for how to present and interpret the results. We could 

calculate Rank Change Probabilities, using the same procedure as we used for interval level 

data. Alternatively, we could calculate the proportion of agreement regarding the top ranking 

individuals – the people who will be admitted to the program.  The proportion agreement can 

be calculated for each possible number of admitted students (see Table 3). This table shows 

that the evaluation procedures are relatively consistent if the program was going to admit three 

or more students. However, if the program was going to admit just one or two students, rank orders do not have adequate consistency: Differ-

ences in the rank orders assigned by the two evaluators would change who is admitted to the program. Therefore, the evaluators may want to 

change their evaluation procedures to create greater score consistency for top ranked applicants.  

 

Nominal Data 
 For nominal level data, numbers are 

used like names for individuals or groups. 

Therefore, it would be inappropriate to 

subtract the scores to examine Score 

Change values and it would be inappro-

priate to order the scores to determine 

how the rank orders change. However, we 

can still examine how scores change from 

one measurement to the next – how often 

the first rater assigned a participant to one 

category and the second rater assigned 

that participant to a different category. 

 Consider an example in which 150 clients are categorized as having one of five personality disorders: antisocial, bipolar, borderline, 

dependent, or passive-aggressive. Table 4 shows the number of people who were placed in each category by each rater. The categories given by 

the first rater are listed on the left hand side, and the categories given by the second rater are given across the top. For example, the first rater 

categorized 27 people as antisocial. Of those 27 people, 16 were categorized as antisocial by the second rater. These frequencies can be con-

verted into probabilities by dividing by the total number of clients. For example, this table shows that 16 / 150 = .11, so that 11% of the clients 

were categorized as antisocial by both of the raters. 

In this example, the two raters agree most of the time for each diagnosis. However, the two raters sometimes disagree on whether someone 

is antisocial, borderline, or passive-aggressive. For example, the first row shows that 6 people who were categorized as antisocial by the first 

rater were categorized as borderline by the second rater. Frequencies do not tell us why there are inconsistencies between the two raters, but 

discovering where there are inconsistencies is the first step in correcting them. 

 

Standard Change 
The Standard Change tells us how much the scores typically change from one measurement to the next. It can be used to summarize the in-

formation in a Score Change Probability Table for interval or ratio level data.  For example, in Table 1, the Standard Change was 6.55.  The 

Standard Change is calculated as the square root of the average squared Score Change (see the Appendix).  The Standard Change should not be 

confused with the Standard Deviation of the Score Change values. The Standard Deviation subtracts the mean Score Change from the numera-

tor, but the Standard Change does not. If the two measures have different means this will influence the Standard Change, but will have no ef-

fect on the Standard Deviation of the Score Change values.  

 

 

 

 
 

Other Measures of Score Consistency 
The reliability coefficient is usually calculated using the Pearson Product-Moment Correlation. It measures the degree of linear association 

between two sets of scores. If the first measure is designated as X and the second is designated as Y, it measures the extent to which Y = aX + 

b. The correlation coefficient is used as a measure of reliability based upon the assumption that the means and variances of X and Y are identi-

cal.  If two measures are parallel, then Lin (1989) showed that the Pearson Product-Moment Correlation equals the Concordance Correlation 

Coefficient, which is discussed below.  If two measures are not parallel, then the correlation between them tends to underestimates reliability 

(Alwin, 2007). 

 Intra Class Correlations (ICC; Shrout & Fleiss, 1979) are also used to assess 

score consistency. ICC(C,1) measures the degree of additivity between two meas-

ures: the extent to which Y = X + b. It assumes that the variances of the two meas-

ures are identical. The symbol ICC(C,1) indicates that it measures the consistency 

of 1 measure to another. ICC(A,1) measures 

the degree of absolute agreement between the 

two measures: the extent to which Y = X. The 

symbol ICC(A,1) indicates that it measures the 

absolute agreement between 1 measure and an-

other. This formula also assumes that the vari-

ances are equal to each other. 

The Concordance Correlation Coefficient (CCC; Lin, 1989) is another measure of the extent to which Y = X. The advantage of CCC over 

ICC(A,1) is that CCC does not assume equal variances. The CCC is a well-accepted measure of score consistency in biology and medicine. 

Some papers (e.g., Barnhart, Lokhnygina, Kosinski, & Haber, 2007) state that it is the most common measure of agreement for continuous 

data. However, the CCC is virtually unheard of in psychology.   

Each of these indices of score consistency has been calculated for the example data in Table 1. See Table 5. The correlation is high in this 

example, because it is not influenced by differences in means and variances. ICC(C,1) is somewhat lower, because it is influenced by the dif-

ference in means but ignores the difference in variances. ICC(A,1) and CCC are quite a bit lower, because they are influenced by the differ-

ences in means and variances. Thus, in a particular measurement situation, if differences in means or standard deviations would be interpreted 

as evidence that the scores are not consistent with each other, the correlation should not be used. One of these other measures of score consis-

tency should be used instead. 
 

Evaluating Score Consistency for LEAS Scoring 
To demonstrate the use of Score Change Probabilities with real research data, I will evaluate score consistency for the Levels of Emotional 

Awareness Scale (LEAS; Lane & Swartz, 1987). The LEAS is the most commonly used measure of the depth and complexity of knowledge of 

emotion words. It contains 20 open-ended questions, which are subjectively scored based upon the rules in the LEAS Scoring Manual (Lane, 

1991). Each item is assigned a score from 0 to 5, so that total scores range from 0 to 100. Because scoring the LEAS by hand is time-

consuming, I want to divide the scoring between several raters and then ignore who did the ratings when I analyze my data. I am therefore in-

terested in an absolute definition of agreement. 

To examine consistency, I asked 48 undergradu-

ate students to complete the LEAS. Eighteen re-

search assistants scored the data after five intensive 

weeks of training that included 360 practice exam-

ples. On average, consistency between the raters was 

high (average inter-rater reliability = .94). However, 

some pairs of raters had higher levels of consistency 

than others. I will focus on one pair of raters who 

had high consistency and one pair of raters who had 

low consistency. 

First I will examine score consistency for a pair 

of scorers who were very consistent with each other. 

Scorers 8 and 12 had very high inter-rater reliability 

(r = .99). However, we can obtain a more complete 

picture of how the two sets of scores compare by ex-

amining Score Change Probabilities, the Standard Change, and 

the CCC. The second column of Table 6 shows that Scorer 12 of-

ten gave a score that was one point lower than Scorer 8 (this hap-

pened 33% of the time). However, it was rare for scores to be 4 

points apart (this happened only 2% of the time) and scores 

never differed by more than 4 points. The Standard Change was 

1.53, and CCC was .98.  

Next I examined a pair of scorers who had a lower level of 

consistency: Scorers 3 and 9. First I calculated inter-rater reli-

ability, which was adequate (r = .79). Second, I examined the 

Score Change Probabilities. Table 7 reveals that they rarely gave 

identical scores (this happened only 6% of the time). Scorer 9 

tended to give higher scores than Scorer 3 (score changes of 6 or 

more were quite common). However, Scorer 9 sometimes gave 

scores that were lower (in one case, 15 points lower). The Stan-

dard Change was 6.25 and CCC was .72. 

Examination of the means and variances is revealing. These 

two scorers have different means (Scorer 3 mean = 63.69; Scorer 

9 mean = 67.15, t(47) = 4.21, p < .001). In absolute terms, the 

difference in the scores is large (3.27) and the effect size for the 

difference is also moderately large (Cohen’s d = .61). Also, these 

two scorers have significantly different variances. Wilcox (1990) 

evaluated several methods of comparing dependent variances 

and recommended the Spear procedure developed by 

McCollough (1987). This test shows that Scorer 3 has a sig-

nificantly larger variance (Scorer 3 variance = 75.43, Scorer 9 

variance = 57.28,   (46) = –.18, p = .22). I conclude that there is a 

moderately large difference in the means and a small difference 

in variances, which impact the overall score consistency. 

Usually, an inter-rater reliability correlation of .79 would be 

considered adequate for research purposes. However, this more 

detailed comparison of the two sets of scores has clearly shown that these scores do not have adequate levels of consistency for us to ignore 

who did the scoring, even for research purposes. 

These examples demonstrate that Score Change Probabilities, the Standard Change, and the Concordance Correlation Coefficient provide 

information that is not given in the inter-rater correlation. Calculation of these statistics can be valuable for applied users who want to know 

how much observed scores are likely to change from one measurement to the next, and to theoretical psychometricians who want to determine 

the extent to which two sets of scores are equal to each other. 
 

Appendix: Calculating the Standard Change in SPSS 

To calculate the Standard Change in SPSS 15, 16, or 17, use the following steps. First, calculate the Score Change Values. Click on the 

Transform menu and select Compute Variable from the drop-down menu. In the Target Variable box, type ScoreChange. In the Numeric 

Expression box, calculate the difference between the two variables. For example, if the two variables were called Score1 and Score2, then the 

Numeric Expression box would say Score2-Score1. Click OK. Second, to square these numbers, click on Transform / Compute Variable. 

Set the Target Variable to SquaredChange. In the Numeric Expression box, calculate the ScoreChange value multiplied by itself: Score-

Change*ScoreChange. Click OK. Third, to calculate the average of the SquaredChange values, click on the Analyze menu, and select De-

scriptive Statistics from the drop-down menu. Click on Descriptives from the side-menu. Move SquaredChange to the Variables(s) box. 

Click OK. Look at the output window to find the mean value for SquaredChange. Fourth, use a calculator to obtain the square root: This 

square root is the Standard Change.  To calculate the Standard Change in later versions of SPSS or in other statistical packages, follow the ba-

sic idea of calculating the Score Change values, squaring them, averaging the squared values, and then taking the square root. 

Table 1 

Interval Data:  Grade Change Probabilities 

 1: Instructor 1: TA 1: Random 

Grade Change 2: TA 2: Instructor 2: The Other 
-14 .00 .04 .02 

-13 .00 .02 .01 

-12 .00 .06 .03 

-11 .00 .08 .04 

-10 .00 .02 .01 

-9 .00 .02 .01 

-8 .00 .02 .01 

-7 .00 .06 .03 

-6 .00 .02 .01 

-5 .00 .06 .03 

-4 .00 .04 .02 

-3 .00 .18 .09 

-2 .00 .24 .12 

-1 .00 .04 .02 

0 .10 .10 .10 

1 .04 .00 .02 

2 .24 .00 .12 

3 .18 .00 .09 

4 .04 .00 .02 

5 .06 .00 .03 

6 .02 .00 .01 

7 .06 .00 .03 

8 .02 .00 .01 

9 .02 .00 .01 

10 .02 .00 .01 

11 .08 .00 .04 

12 .06 .00 .03 

13 .02 .00 .01 

14 .04 .00 .02 

Note. Inter-rater reliability = .92.  Standard Change = 6.55. 

Table 3 

Ordinal Data: Proportion Agreement 

regarding which Students to Admit 

Number 

admitted 

Proportion agreement 

(fraction)  (decimal) 
1  0 / 1  =  0.00 

2  1 / 2  =  0.50 

3  3 / 3  =  1.00 

4  3 / 4  =  0.75 

5  4 / 5  =  0.80 

6  5 / 6  =  0.83 

7  7 / 7  =  1.00 

8  7 / 8  =  0.875 

9  9 / 10  =  0.90 

10  10 / 10  =  1.00 
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Table 2 

Comparing Ranks Assigned by Two Evaluators 

Applicant's 

Initials 

Rank based on 

Evaluator A 

Rank based on 

Evaluator B 

Rank 

Change 

HD 1 2 1 

JT 2 3 1 

AB 3 1 -2 

CF 4 7 3 

KA 5 4 -1 

OL 6 5 -1 

PS 7 6 -1 

RF 8 9 1 

WB 9 10 1 

PB 10 8 -2 

 

Table 4 

Category Change Frequencies (and Probabilities) 

 Second Rater  

First Rater Antisocial Bipolar Borderline Dependent 
Passive-

aggressive 
Total 

Antisocial 16 (.11) 1 (.01) 6 (.04) 1 (.01) 3 (.02) 27 (.18) 

Bipolar 3 (.02) 23 (.15) 1 (.01) 2 (.01) 0 (.00) 29 (.19) 

Borderline 5 (.03) 1 (.01) 18 (.12) 0 (.00) 3 (.02) 27 (.18) 

Dependent 1 (.01) 0 (.00) 1 (.01) 28 (.19) 3 (.02) 33 (.22) 

Passive-aggressive 5 (.03) 1 (.01) 2 (.01) 0 (.00) 26 (.17) 34 (.23) 

Total 30 (.20) 26 (.17) 28 (.19) 31 (.21) 35 (.23) 150 (1.00) 

Note. Proportion agreement = .74. Kappa = .67. 
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Table 5 

Coefficients of Consistency for the Example Data in Table 1 

Coefficient Example Data 

Means 60.00; 65.02 

Variances 35.20; 80.70 

Covariance 49.14 

Correlation .92 

ICC(C,1) .85 

ICC(A,1) .70 

CCC .70 

Standard Change 6.55 

 

Table 6 

LEAS Score Change Probabilities for Scorers 8 and 12 

First Scorer: 8 First Scorer: 12 First Scorer: Random Score 

Change Second Scorer: 12 Second Scorer: 8 Second Scorer: Other 

 -4 .02 .00 .01 

 -3 .08 .00 .04 

 -2 .15 .06 .10 

 -1 .33 .10 .22 

 0 .25 .25 .25 

 1 .10 .33 .22 

 2 .06 .15 .10 

 3 .00 .08 .04 

 4 .00 .02 .01 

Note. Inter-rater reliability = .99. Standard Change = 1.53. CCC = .98. 

Table 7 

LEAS Score Change Probabilities for Scorers 3 and 9 

First Scorer: 3 First Scorer: 9 First Scorer: Random Score 

Change Second Scorer: 9 Second Scorer: 3 Second Scorer: Other 

 -15 .02 .00 .01 

 -14 .00 .00 .00 

 -13 .00 .00 .00 

 -12 .02 .06 .04 

 -11 .00 .02 .01 

 -10 .00 .06 .03 

 -9 .00 .00 .00 

 -8 .00 .02 .01 

 -7 .00 .04 .02 

 -6 .00 .13 .06 

 -5 .02 .06 .04 

 -4 .00 .10 .05 

 -3 .02 .13 .07 

 -2 .06 .08 .07 

 -1 .02 .06 .04 

 0 .06 .06 .06 

 1 .06 .02 .04 

 2 .08 .06 .07 

 3 .13 .02 .07 

 4 .10 .00 .05 

 5 .06 .02 .04 

 6 .13 .00 .06 

 7 .04 .00 .02 

 8 .02 .00 .01 

 9 .00 .00 .00 

 10 .06 .00 .03 

 11 .02 .00 .01 

 12 .06 .02 .04 

 13 .00 .00 .00 

 14 .00 .00 .00 

 15 .00 .02 .01 

Note. Inter-rater reliability = .79. Standard Change = 6.25. CCC = .72. 
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